

Project Partners

Oklahoma State University – Dr. Chad Penn

- Filters designed for the removal of dissolved phosphorus (P) from runoff water
- Industrial by-products used for phosphorus sorption
 - Acid mine drainage residuals
 - Drinking water treatment residuals
 - Steel slag
 - Gypsum
 - Fly-ash
- PhROG Model (Phosphorus Online Removal Guidance)
 - Model to aid in the design of filters based on:
 - Inflow P concentrations
 - Flow volumes
 - Retention time
 - Phosphorus sorbing characteristics (media)

Current OSU applications

- Poultry Farm drainage
- Golf course drainage

Project Purpose

Verify effectiveness of technology in Alberta

Project Goals

- Test effectiveness for seasonal differences
- Identify and test local by-product materials as filter media sources
- Determine if technology is a cost effective management tool

Project Background

- Milk River Ridge Reservoir potable water source
- Deterioration in water quality of the reservoir
- Monitoring program by Warner County and Alberta Environment and Parks (AEP)
 - Milk River Ridge Reservoir Water Quality 2014 2015 (Cecilia Chung, AEP)
- Tributary 4 high dissolved P (2014 max: 3.9 mg/L, median: 1.6 mg/L)

Site selection and filter design

Important information:

- Drainage area
 - GPS elevations
 - GIS mapping
- Flow rates
 - Estimates based on culvert sizing and SCS runoff curve number method
 - Potential peak flow rate of ~1m³/s
- Nutrient concentration
 - 4 mg/L (AEP report)
- Filter media and characteristics
 - Porosity
 - Phosphorus sorption capability
- PhROG model output

Site selection and filter design

Controlled flow filter

Benefits:

- Economics
- Longer contact time
- Reduced chance of fouling/plugging
- Demonstration access

Other BMPs implemented:

- Perimeter fencing
- Off-stream watering system
- Perennial seeding of low areas

Filter Site August 17, 2017

Monitoring and Sampling Equipment:

Channel flow

- Cut-throat flume
 - Pulsar DB3 Ultrasonic water level sensor
 - CR1000 data logger + remote access

Filter flow

- Tipping bucket flow gauge
 Sampling
 - 2 ISCO 6712 auto-samplers

Weather

- Air temperature & RH
- Rainfall
- Solar radiation
- Wind Speed & Direction

Media

- Media temperature
- Inlet water temperature

Cutthroat Flume to monitor total flow (filter + tributary)

Filter Construction

Filter Construction

Upstream view – higher inlet, lower outlet

Tipping Bucket – filter flow sensor

Dec 14, 2017

Apr 11, 2018

Cold Weather Testing

Results to date

Phosphorus (P) Filter Performance					
		Water			Dissolved
Water Sample	Water	Flow	Dissolved	Dissolved	Р
Date	Temperature	Through	P Inlet	P Outlet	Removed
dd/mm/yy	Degrees C	L/Min	mg/L	mg/L	%
22-Jun-17	16	16	0.81	0.01	99
29-Jun-17	16	16	0.61	0.01	98
29-Jun-17	16	17	0.54	0.01	98
6-Jul-17	18	12	1.57	0.05	97
27-Jul-17	19	13	1.99	0.03	98
30-Oct-17	6	9	0.40	0.02	95
2-Nov-17	3	12	0.34	0.03	92
14-Nov-17	5	7	0.60	0.03	96
14-Nov-17	5	7	0.48	0.02	97
18-Dec-17	5	3	0.40	0.07	83
26-Jun-18	16	1	0.87	0.04	95
12-Jul-18	25	11	0.96	0.08	91

Lessons learned to date:

- Need water
- AEP process
- Pre-data (flow)
- Drainage area
- Media sourcing/cost
- Mother Nature
 - Cold conditions impacts on equipment
 - Rodents
 - Flume issues undercut
- Plugging

Contact Info:

Alberta Ag & Forestry

Environmental Stewardship Branch

Lynda Miedema: (587) 486-1012

Ken Janzen: (587) 486-1023

Vince Murray: (780) 674-8277

Trevor Wallace: (780) 980-7587

Water Quality Branch

Greg Piorkowski: (780) 644-1971

Warner County

Jamie Meeks: (403) 642-2255

